

February 2022

## International Battery Metals' ("IBAT") Objectives

## Core Issues with the Lithium Industry

#### Massive lithium production shortfall this decade

- Benchmark is projecting a 52% shortfall in lithium production by 2030
- Implementation time for conventional lithium extraction plants range from 5 – 12 years
- There is also a shortage of lithium hydroxide and carbonate production capacity

#### All current lithium production plants have terrible environmental records

| Lithium from Brine                                                                                                | Hardrock Mining                                                                  |
|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| <ul> <li>Solar evaporation<br/>processes in Chile recover<br/>only between 20 – 30% of<br/>the lithium</li> </ul> | Huge chemical<br>consumption, waste<br>ponds, tailings ponds and<br>sludge ponds |
| ✗ Rest is wasted in salt piles                                                                                    |                                                                                  |
| × Resource depletion                                                                                              | Sroundwater pollution                                                            |
| Depletion of critical<br>groundwater, leading to<br>displacement of<br>Indigenous People in Chile                 | Most of these issues are<br>hidden because the ore is<br>processed in China      |

## IBAT's **Objectives** Create a revolutionary lithium extraction technology that is defined by Extreme environmentalism **Resource protection** Rapid implementation and production Low capital and operating cost

Source: Benchmark Mineral Intelligence

## What IBAT Has Done



#### Engineered and built our first patented<sup>(1)</sup> Mobile Extraction System

- US testing and demonstration in March 2022
- Expected shipment to a South American salar in Q2 2022



- This feature allows us to place equipment essentially at any place that we find lithium
- Rapid deployment months rather than years or decades to implement
- Ability to address a wide range of lithium resources the resource size does not matter



#### **High Efficiency**

- Our system is capable of extracting high percentages of the lithium in solution
- It also rejects over 99% of brine impurities without secondary purification



#### **Clean – Low Environmental Footprint**

- There are essentially no chemicals, waste water or waste solids in the lithium extraction process
- Very low CO<sub>2</sub> footprint

## **How IBAT's Technology Works**





#### **Process Description**

- A 35% Lithium Chloride solution is produced for shipment
- Impurities are typically less than 0.1 0.5% on a LiCl basis
- We utilize a special absorbent that has a unique double selectivity
  - It rejects virtually all cations except lithium and all anions except chloride
- This absorbent requires only water for regeneration
- Brine and water are kept separate in the extraction process allowing production of high purity lithium chloride product
- Depending on environmental regulations, spent brine can be reinjected into the resource, sent to a potash operation or impounded on the salar

## **Comparable Brine Operations**



IBAT far exceeds its peers with respect to mobility, capital cost and construction start up time



| Type of Technology                                  | Mobile – DLE via<br>Selective Absorption                 | Solar Evaporation Modified DLE via Selective Absorption |             | Modified DLE via<br>Selective Absorption             |
|-----------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------|-------------|------------------------------------------------------|
| Type of Installation                                | Modular and Mobile                                       | Stationary                                              | Stationary  | Stationary                                           |
| Chemical<br>Consumption                             | Brine / water cycle –<br>minimal chemical<br>consumption | Very high due to<br>impurities                          | Low         | High due to ion<br>exchange removal of<br>impurities |
| Estimated Capital Cost<br>for a 20,000 MT LCE Plant | ~US\$120 mm                                              | ~US\$1 bn                                               | >US\$500 mm | >US\$500 mm                                          |
| Construction Start-up and Production                | ~1.5 years                                               | 6 – 12 years ~5 years                                   |             | ~5 years                                             |
| Target Production<br>Capacity                       | ~20,000 MT                                               | ~20,000 MT                                              | ~20,000 MT  | ~20,000 MT                                           |



## **Approximate Modular Plant Layout**

#### **Key Elements**

- 425 ft pipe and electrical rack
- Brine, water and product tanks
- 3 Brine filtration to remove solids
- Lithium extraction via a highly selective absorbent
- 5 Strip water concentration to ~12% LiCl solution followed by thermal evaporation to 25% LiCl

#### Transportation of LiCl solution to a Lithium Carbonate or Hydroxide Plant







## **Photos of Modular Equipment**





## Conclusion



IBAT's patented, modular and mobile lithium extraction plant provides key advantages





# international battery metals

## **Appendix**

## CEO: Dr. John Burba, Ph.D.



IBAT's technology development is led by Dr. John Burba, a world-renowned pioneer in lithium extraction technology known as the "Godfather of Lithium"

Background



#### **Extensive Previous Experience**

- IBAT is led by Dr. John Burba, a chemical and engineering executive with over 40 years of experience in the industry and a pioneer in the development and implementation of Direct Lithium Extraction
- Dr. Burba began his career at Dow Chemicals Co in the 1980s focusing on lithium separation
- After leaving Dow Chemical in 1992, Dr. Burba and the late Dr. Bauman invented the first practical selective lithium extraction absorbent
- In 1994, Dr. Burba initiated a design process within FMC (now Livent) to install the selective absorption process in the Salar de Hombre Muerto in Argentina, which remains an industry-leading operation
- Dr. Burba has reengineered the entire selective absorbent process to create the modular plants being produced by IBAT today
- Dr. Burba is a prolific named inventor, having his name associated with 80+ patents, many of which pertain to lithium and battery technologies



### **IBAT's Mobile Extraction Units Are Superior to Incumbent Technologies**



IBAT's patented mobile extraction technology is a step-change from traditional processes that are capital intensive and require long lead, multi-year development cycles before deployment

- Direct lithium extraction technology represents a fundamental shift from traditional lithium extraction methods, with superior investment, design, construction and resource characteristics
- Although a novel application and proprietary patented<sup>(1)</sup> process design, the fundamentals of the Company's DLE technology have been proven and implemented for decades at FMC's operation in Argentina and were previously overseen by Dr. Burba himself

#### **Characteristics of Extraction Technologies**

|                                                  | Hard Rock / Spodumene                                                               | Traditional Brine /<br>Solar Evaporation                                           | Mobile Lithium Extraction                                                    |
|--------------------------------------------------|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| Investment Characteristics                       | <ul><li>Large Capital</li><li>Long Return Cycle</li></ul>                           | <ul><li>Large Capital</li><li>Long Return Cycle</li></ul>                          | <ul><li>Stepwise Progressive<br/>Investment</li><li>Staged Results</li></ul> |
| Exploration, Permitting and Resource Development | <ul> <li>Large Comprehensive<br/>Review and Development</li> </ul>                  | <ul> <li>Large Characterizations and<br/>Environmental Disposition</li> </ul>      | <ul> <li>Stepwise Exploration,<br/>Permitting and Development</li> </ul>     |
| System Design<br>Characteristics                 | <ul><li>Long Lead</li><li>Large Footprint</li><li>Complex Solids Handling</li></ul> | <ul> <li>Chemical Mega Project</li> </ul>                                          | <ul> <li>Containerized Integrated<br/>Mobile Units</li> </ul>                |
| Construction                                     | <ul><li>Large Mobilization</li><li>Multi-Organizational<br/>Coordination</li></ul>  | <ul><li>Large Mobilization</li><li>Multi-Organizational<br/>Coordination</li></ul> | <ul><li>Plug and Play Mobilization</li><li>Repetitive Fabrication</li></ul>  |

## **Direct Lithium Extraction Overview**



- Legacy brine lithium extraction methods pump brine from underground reservoirs into evaporation pools, allowing solar radiation to evaporate the water leaving behind the salt compounds that are subsequently processed at co-located facilities
  - The evaporation process can take up to 8 to 24+ months before salt is available to be processed and recovery rates are poor, ranging between 20-30%
- DLE process expedites the lithium extraction rate, increases the lithium recovery factor and reduces the impurity level during processing when compared to evaporation methods



**Generalized DLE Process**<sup>(1)</sup>

1) Source: Jade Cove Partners

## **Direct Lithium Extraction Technologies**



#### Three Main Families of DLE Technologies<sup>(1)</sup>



## **IBAT Direct Lithium Extraction Illustrative Process Flow**

IBAT's process has been highly engineered to result in the most energy-efficient DLE process in the industry



## **Significantly Less Footprint Required**



IBAT's MEU's require significantly less space than existing brine fields that rely on evaporation to separate lithium from brine

- IBAT's modular system also does not require significant foundation or earth work relative to large brine fields, resulting in the ability to deploy more quickly and re-deploy cost effectively
- IBAT's modular nature and footprint also allow for extraction of lithium from brine that is typically uneconomic for larger plants or other technologies that require a fixed plant

#### IBAT Modular Plant Footprint Compared to Existing Brine Lithium Extraction Method



Modular Extraction Unit requires only ~25 acres to produce 20K MT of lithium chloride, 98% less than traditional brine solar evaporation methods

## **Mobile Extraction Module Underpins Value Proposition**



IBAT's skid-based system was fundamentally designed to be modular, which results in many favorable characteristics for resource developers, including:

- Ability to deploy in phases and expand as capital availability or projects requirements dictate
- Accelerates first resource recovery (and thus economics) if deployed in phases
- Ability to re-deploy from one salar to another if resource profile changes
- Skid-based system is manufactured efficiently in global fabrication facilities and shipped to sites for assembly rather than built in-field, resulting in significantly lower construction costs



## **Step-Change In Sustainability – Carbon Emissions**



IBAT's system will be the most carbon-efficient DLE method in the market

- Primary sources of CO<sub>2</sub> are from fuel utilized to heat the brine for extraction, and electricity to operate the module's pumps and controls
- The initial demonstration unit will utilize LNG as a heating source and electricity source, but a transition to solar electricity is envisioned for future units, which will cement IBAT's modules as the most carbon-effective extraction source in the market

#### Total CO<sub>2</sub> Equivalent per Tonne LCE Equivalent<sup>(1)(2)</sup>



#### Total IBAT CO<sub>2</sub> Emissions by Energy Source<sup>(2)</sup>

|                                                            | First Unit | Future Units |
|------------------------------------------------------------|------------|--------------|
| Capacity (LCE)                                             | 20K MT     | 20K MT       |
| Operating Days                                             | 330        | 330          |
| Fuel for Steam                                             | LNG        | LNG          |
| Electricity Source                                         | LNG        | PV Solar     |
| Total Fuel (MM Btu/hr)                                     | 218.8      | 130.8        |
| CO <sub>2</sub> Generated<br>(MT CO <sub>2</sub> / MT LCE) | 4.01       | 2.15         |

2) Company provided CO<sub>2</sub> emissions analysis. Assumes an illustrative 330 operating days per year. As of October 2021.

3) Based on use of massive solar evaporation pods.

<sup>1)</sup> IEA. As of May 2021

## **Step-Change In Sustainability – Water Usage**



IBAT's system will use substantially less water than traditional brine evaporation methods, mitigating one of the key concerns of lithium extraction from brine

- Traditional lithium extraction from brines is accomplished through the use of evaporation ponds that use a large amount of water taken from salars in arid environments
- This water use affects local wildlife and can disrupt the ecosystem, which has led to environmental challenges to operators looking to expand their capacity in traditional brine lithium-producing regions
- IBAT's technology will result in >96% of water being recycled directly back into the salar, which is a key enabler of a successful permit grant



#### Water Expended in Lithium Production<sup>(1)</sup>

## **Industry Low Operating Costs**



IBAT and its partners have designed the modules to be highly operationally efficient and have focused on minimizing headcount at the site while maximizing remote monitoring and automation capabilities

The company estimates costs to produce Lithium Chloride of \$1,300 – \$1,500 per tonne of LCE, and approximately \$2,000 per tonne to finish lithium carbonate conversion, making the Company one of the lowest cost producers in the industry – and with future modifications or conversion plants, the lowest cost producer



1) Benchmark Mineral Intelligence as of Q3 2021. Represents cash production costs, which excludes the capital charge and any government royalties for comparison with IBAT's presented operating cost

#### Lithium Supply Cost Curve<sup>(1)</sup>

## **Unmatched Intellectual Property Provides Critical Advantage**

- 1
- The Company's fundamental patent on its mobile extraction technology (U.S. Patent # 11,229,880) was issued on January 25, 2022
- The patent covers modular development of DLE technology, and was broadly designed to best preserve IBAT's technology moat

#### Modular Extraction Apparatus

Apparatuses and methods for extracting desired chemical species from input flows in a modular unit

- United States Patent and Trademark Office ("USPTO") issued in January 2022
- USPTO Notice of Allowance from USPTO received in December 2021
- Original patent filing: October 2018









## **Development Plan Timeline**



IBAT is farther along the development timeline than any emerging DLE competitor, and expects to deploy its first commercial-scale unit into the field in mid-2022

• Once the initial unit is deployed, IBAT will begin manufacturing additional units



#### **Development Plan**